全路面起重机的发源地在德国,“技术第一,质量至上”是德国制造业的核心价值观,表现出其对产品技术和质量的狂热追求。
美国格鲁夫公司的强项是越野轮胎起重机和汽车起重机。20世纪80年代,欧洲全地面起重机如火如荼地发展,逐渐把格鲁夫挤出了欧洲市场。此后,格鲁夫几经研究,于1983年收购了英国老牌企业科尔斯,企图以科尔斯为桥头堡,重新打入欧洲市场。格鲁夫投巨资开发全地面起重机在英国生产,虽然产品发展到300t,还是没有能够分得欧洲市场足够的份额。痛定思痛,格鲁夫认识到德国全地面起重机在欧洲市场的地位不可撼动,于是动用资本的力量,于1999年收购了德国的克虏伯轮式起重机公司,才真正成为全地面起重机市场上三足鼎立的一支。
德国已成为全地面起重机事实上的霸主,它在全地面起重机上所采用的技术也成为无冕的标准。本文似从底盘设计技术、吊臂制造技术、CAN总线控制技术等3个方面探析全地面起重机的主要关键技术所在。
底盘设计技术
底盘设计技术中的关键是油气悬架系统和多桥转向系统设计,这两项技术是全地面起重机的独有技术。下面对油气悬架系统进行探讨。
油气悬架系统多桥底盘的必要条件,除了能起到多轴平衡的作用外,还能起到增加整机侧倾刚度、克服制动前倾、调节车架高度和锁死悬架等功能。油气悬架系统由油气弹簧和配流系统组成。油气弹簧是用气体作为弹性元件,在气体与活塞之间引入油液作为中间介质;而配流系统则利用油液的流动,平衡轴荷、阻尼振动、调节车身高度等。油气悬架系统有以下优点。
增强承压能力
油气弹簧以钢筒蓄能器作为弹性元件,能够承受很高的压力,通常可达20MPa,因而体积小、质量轻,用于重载轴荷时质量比钢板弹簧轻50%以上。
提高行驶的平顺性
油气弹簧可以获得很好的弹性特性曲线和较低的固有频率,因而汽车的行驶平顺性和舒适性大大优于钢板弹簧悬架,并减小了整车对地面的冲击力。油气悬架的变刚度弹性特性曲线可以防止发生悬架击穿,对于越野行驶非常重要。
有效地平衡轴荷
油气悬架系统可以通过管路的连接,将不同车轴的油气弹簧油缸连接起来,起到平衡轴荷作用。
增加整机的侧倾刚度
当车辆转弯时,由于离心力的作用,重心转移,因而整车明显倾斜。油气悬架系统将左、右油气弹簧串联,可以大大加强整车的侧倾刚度。选择油气悬架液压缸最佳大、小腔面积比可以获得理想的侧倾刚度。同理,如果将前、后油气弹簧油缸串联,可以提高整机纵角向刚度,克服制动点头现象。
此外,油气悬架系统通过对油液流动的调节,可以起到阻尼作用(即减振作用),还右以调节车身高度和锁死悬架,后者在轮式起重机的起重作业中非常有用。
要制造全地面起重机,就要开发油气悬架系统;也可以说,没有油气悬架系统,就没有全地面起重机。全地面起重机底盘的设计要由起重机厂自己进行,而不能靠专业汽车厂提供现成的底盘,其原因有以下几点。
机构不同
全地面起重机的关键技术是油气悬架机构及其相应系统。这是专有技术,载重汽车上不用,所以汽车厂不会投资研究该项技术。
使用工况和设计方法不同
起重机底盘的使用工况永远是满载,但行驶里程远远低于载重汽车。因此,两者在设计方法和计算机原理上有很大区别,尤其是大吨位起重机底盘。例如,汽车设计中传动机构齿轮的破坏形式是点蚀,因此设计计算机以疲劳载荷为主;而起重机底盘设计中传动机构齿轮的破坏形式是断裂,因此设计计算时以轮齿抗弯度为主。
生产方式与批量不同
汽车工业的生产方式是典型的单一品种批量生产,即使是批量较小的载重汽车也均以万台为单位。而起重机的生产方式是多品种、小批量,一个型号的产品往往只生产百十台。因此要求汽车厂按起重机厂的批量供应产品非常困难。
值得一提的是格鲁夫的Mega Track滑柱式油气独立悬架系统。独立悬架无论从行驶的舒适性、操作的稳定性和越野的通过性上均优于整体悬架,因此广泛用于轿车、越野汽车和装甲运兵车上。但由于其结构的复杂性,除太脱拉(Tatra)外,很少有民用载重卡车采用这种结构。最常用的独立悬架是滑柱摆臂式悬架,又称麦克弗逊悬架,它是美国通用汽车公司工程师麦克弗逊(Earle S MacPherson)于1947年受飞机起落架的启发而发明的,并以他的名字命名。这种悬架的优点是结构简单、布置紧凑,减振器活塞杆兼做转向主销,车轮跳动时沿主销轴线运动,前轮定位变化小,具有良好的行驶稳定性。同其他独立悬架比较,它没有其他拉杆,因而增大了两轮间的内部空间,给发动机和其他部件的布置带来了方便。
装有麦克弗逊悬架的车轮跳动时,转向主销略有摆动,前轮变位角有变动,和麦克弗逊悬架极为相似的滑柱式悬架(也称烛式悬架)可以避免这一缺点。烛式悬架车轮跳动时主销倾角和车轮定位角不变,这对于车辆的操纵生和稳定性非常有利,这一优点是其他形式的独立悬架所不及的。同其他独立悬架比较,其车轮跳动时轮距的改变也较小。滑柱式油气悬架体积小、质量轻、总体布置简单,因此32t以上的重型自卸车上普遍采用此种悬架。
1988年,德国克虏伯轮式起重机公司在分析了各种悬架的优缺点,研究了越野汽车、自卸车和飞机起落架等各种油气悬架的结构特点后,果断地投资200万马克,耗时2万工时,成功研制出滑柱式独立油气悬架,并应用于3-8桥全地面起重机上,由于塑造出惟一通过德国坦克车试验场越野路面考验的起重机底盘,被人们称为跨世纪的新技术。这上点也许是格鲁夫收购克虏伯的原因之一。利勃海尔和德马格则采用整桥悬挂的传统设计。
吊臂制造技术
为提高起重机的起重作业性能,最直接的办法就是减轻起重吊臂的质量。为达此目的,首先要有先进的吊臂设计理论,设计出刚度大、质量量轻的吊臂,目前德国全地面起重机的吊臂截面形状全部为椭圆形。其次要采用高强度钢材,国外吊臂普遍采用960 MPa以上的钢材,有些100t级的起重机为减轻质量,吊臂上甚至使用了仅4mm厚的瑞典SSAB生产的Weldox1100型钢板。SSAB目前正在研制1300MPa的超高强钢板。
这样高度的钢板,不但焊接要求非常高,成形也十分困难。一般钢板的弯形,反弹角度只有1°,如弯一个90°的弯,需要将钢板弯到89°而像Weldox960型的钢板,弯90°的弯时,需要将钢板弯到65°才行。
椭圆形截面吊臂的设计要用到最先进的力学理论和强大功能的计算机。笔者参观利勃海尔工厂时,曾为巨大截面的吊臂震憾。500t的LTM 1500型全地面起重机的7节吊臂全伸时的长度为84m,基本臂截面高度为1.65m,个子不高的人为用弯腰即可从臂筒中通过。这样大截面的臂筒由4块钢板焊接而成,如第三节臂,臂筒长14.5m,上盖板是1块板,弯2道90°折弯;下盖板由3块钢板焊接成型,分别为8.6mm厚、8m长、9.5mm厚、4.5m长;10mm厚、2m长,每块板折30道弯形,截面形状近似椭圆,然后将3块钢板焊接在一起,再和上盖板焊接成整个臂筒。3块下盖板厚度虽然不同,但是分别折30道弯形后,对接得严丝合缝,真可谓巨大的钢铁艺术品。7节吊臂的臂筒一共用了24块钢板,最小厚度6mm,最大厚度12mm。
正是由于椭圆形截面吊臂制造的复杂性,使起重机制造厂很难掌握吊臂的加工工艺,设备利用率低,制造成本高。因此,利渤海尔、德马格、格鲁夫等伸缩臂起重机制造厂已完全放弃椭圆形截面吊臂的制造,外协给专业制造厂生产。最著名的吊臂专业制造厂是比利时的Vlassenroot公司,行业内称它为“比利时小子”。Vlassenroot公司位于布鲁塞尔郊区,成立于1926年,现在专门切割、弯形、焊接各种伸缩吊臂。公司拥有2台5轴数控激光切割机,激光4kW,可以切割30m×7m、最大厚度为20mm的钢板和各种各样的焊接坡口;有12台折弯机,最大折弯长度为24m(960)t、最大压力为4000t(15m)。这些机器每天工作24h、每周工作7天,一年消耗钢材11000t,生产出世界上20%的起重机吊臂,用户有利渤海尔、德马格、格鲁夫、多田野、加藤、PPM、Link-Belt、Luna等世界各国的起重机制造厂。Vlassenroot只按照用户的图纸制造吊臂,提供吊臂总成或将一套吊臂的臂筒套在一起交货。
CAN总线控制系统
传统起重机的电器控制系统是一对一的控制,控制是直接且惟一的,导线内流动的是模拟信号。随着起重机的电气系统越来越复杂,特别是大量ECU (Electric Control Unit)的使用,使对一的通信几乎不可能实现。CAN总线控制系统有效地解决了这个问题。
CAN(Control Area Network)即控制器局域网络,是计算机网络技术的现代控制技术领域的应用和发展。随着零部件智能化的提高,发动机、变速器、液压泵/马达、电液控制阀等众多ECU之间的通讯,起重机力矩限制系统、支腿压力检测及车架调平系统、单缸插销吊臂伸缩系统、风力检测系统等共用大量的传感器、底盘传动系的防抱死、防滑转,都需要大量信号的传递和交流。CAN总线控制系统的基础是数字信号的传递,通俗地讲,各个控制单元和传感器都要将控制和检测信号数字化编码,以一定的频率不断地发送到总线上,而执行元件则从总线上各取所需,并把执行情况反馈到总线上。数字化的编码使所有信号互不干涉,理论上一根大容量的主线即可传递所有信号。有了数字化的总线,CAN才能有效地工作。
CAN总线控制系统广泛地应用于汽车的控制系统,上汽的POLP是一辆采用总线控制的国产轿车。比起汽车,轮式起重机采用总线控制系统具有更大的优越性,它可以解决许多传统控制方式解决不了的问题。
简化电路通道
起重机是回转作业机械,上下车间的通讯量非常大。一台越野轮胎起重机的驾驶员在上车要操作下车的发动机油门、制动和转向模式、车桥驱动模式、差速器锁死、变速器换挡、悬架锁死、水平和垂直支腿动作,并要了解发动机、变速器的水温、油温、油压等情况。传统的控